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A sohttion of a variational problem of the Dolza~eyer type basad on the requiremeat of 
sufficient conditions for the absolute minimum [lf is investigated. 

Self-similarity of the class of problems under coneidaration is baaed on the fact that 
some functions entering the equations are paramctrfc and dependent in a well known manner 
on the time and position of the points of discontinuity of the first kind. 

Papers [2 and 31 h s ow that the above problem is a variational one, and using the 

classical definition of variation they derive the necessary conditions for the extremam of 
the resulting functfonal. 

Application of the optimality principle helps us to establish the existence of some 

non-trivial curvas, on which the absolute extremnm of a given functional iz~ reached, Thus, 
for example, the absolute extremum of the functional considered on the class of control 
functions representing the function of variation of the relative ma88 of a multi-stags 
rocket; can perhaps be only achieved on the representation of a rocket with the infinftc 
number of stages (continuous). 

The formulas obtained (5.2) represent the Tsiolkovski formula (5.4) generalieed for 
the case of arbitrary motion of a rocket uuder continnooa thrast, A well known problem 
allied to the present one is that belonging to the dynamics of flight, and it deals with the 
programming of the thrust of the reaction engine when it is postulated that the engine 
performs under the conditions of intermittent maximum thrust. 

Absolute extremum of the functional is reached, in thie case, on the curves realised 
under the gliding conditions. 

1. Let the mass of a multi-&age rocket decrease linearly 141, and let y = m/ma bs the 
dimensionless mass of the multi-stage rocket, where m. is the mass of the composite 
rocket at the moment of start. If we consider the auxiliary plane y, t, then the parts of the 
curve y 4 y (t) corresponding to the intervals of the powered flight will be represented by 
the sloping straight lines, while the intervals during which the empty stage separates, 
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lIIYl73 
will be represented by the vertical segments (Fig. 1). 

Yl- 
@J We shall assume that the performance of the engines 

b L of consecutive stages is not discontinuous, and we shall 

Yz denote the ration of the ‘dead weight’ of the i-th stage to 

r,(t) L- the mass of the fuel contained by it, by ki. Also, we shall 

4 have 
T Y (4 - 0) = Yi-t Y Pi + 0) = Yj (i = 1, . . .( n) 

where ti is the moment of separation of the i-th stage. 
FIG. 1 Analytically, the function y is defined by 2s equations of 

the type 

yi-- $&-l--Pi(ti-f~-l), yi =yi- (l+ki)-kiyi-1 (I.11 
where 

f, = 0, t, = T, Y,== 1, .vn = mp ! no 

Here 7’ is the time of working of the engines, mp is the payload and pi is the con- 

sumption of fuel per second by the i-th stage. 

From (1.1) it follows that the dimensionless mass of the composite rocket plays the 

part of a control function of a particular type as far as the form of the control function 

between its points of discontinuity of the first kind is known. Points ti ‘floating’ on the 

segment [to, T] influence the magnitude of the resulting functional. 

Let us consider the motion of a single-stage device under the assumption that the 

time of flight of this device is greater, then the time of its powered flight. 

For simplicity we shaI1 assume that only one panse is allowed during the active 

period of the engine. The relative masa changes in a linear manner and the ratio of the 

thrust P to the initia1 weight of the device is eqnal to 

P I me = - Vpy’. 
The control function y (t) and its derivative are given, in our case, by the following 

analytical equalities (Fig. 2) 

-%y* 

t 

~ 

This control function y (t) belongs, together with its 

derivative, to the class of functions the behavior of which 

between the points of discontinuity of the derivative, is 

known. The discontinuities of the derivative are deter- 

mined from the conditions of the extremum of an arbitrary 

functional. 

1 2. Let the process occurring in some dynamical 
4 tt T system be described by R ordinary differential equations 

FIG. 2 of the first order 

* 
=a - fo (2, us 8, t) = 0 (s = 1,. . . f nf (2.11 

where z (t) and u (tf are the n- and r-dimensional vector functions respectively, the pro- 

perties of which are described in [I], and y (t, tj) is the tdimensional vector function, the 
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components &~(t&), . . ., gl(t,t$, of which are continuous almost everywhere on the 

interval [to, T] with the exception of the points ti, on which these functions possess 

discontinuities of the first kind. For any fixed r~[rs, T], the vector function y (t, ti) 

belongs to a finite closed manifold n. 

Conditions imposed on x (t), u (t) and y (r, ti) define a set V (t, ti) of admissible 

values of the aggregates of u + r + i numbers (xa, ui, ti) for every t E [to, T], and a 

region B of admissible values in the (n + 1-dimensional) space t, x together with the set V 

of admissible aggregates of fn + r + i + 1) numbers xS, ai’, t, ti (s = 1, . . . . n ; j = I, ,.., r). 
f 

We shall now pose a problem on determining the minimum of the functional 

T 

ou the space of triads of vector functions % (t), II (t), y (r, ‘i). The set of the triads of 

vector functions possessing the properties given above and satisfying (2-l), belongs to 

the class Di ; hers and in the following, the index i means that the variational problem is 

considered on the class of functions y (t, ti) which possess, on the interval [to, T] not 

more than i diacontinuities of the first kind. 

Obvionsly, if we determine the points tit we shall know the vector function y (t, ti). 

3. The fundamental theorem of [I] has the following form. 

TAeorem 1. Let a sequence (x8+, z~#*~ pa*} of vector functions be given. The sufficient 

condition for this sequence to minimise the functional J on Di is, that there exists a function 

cp (t, z), such, that 

R(ti--0)-R($+O)+ !8R&dt=O 

to 

If the minimum 0x1 Di exists, then the first and second condition of (3.1) have the form 

R 189 x*, u*, r/l = p 0, ti), Q, (x0, xl) = inf Q, (x,, 4, zp E B (to), z1 E B(T) 

These conditions coincide with the conditions of the fundamental theorem (1). 

shall now prove the validity of the third condition. Let us construct the functional 

T 

I= @ (20, 21) - 
s 

R (t, z, u, y) dt 

I* 

We 

(3.2) 

This functional coincides on the set Di with J by virtue of the properties of the 

function R. If y E B , then the functional I is a furetion of the points ti. Writing (3.2) 

as 

fi 

Ir=O(X*, zr)-i f z?i(& 2, u, y)dt (3.3) 
i:-1 ii...1 
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and equating the derivative of I with respect to ti to zero, we obtain the third condition. 

We assume that the curve minimising the functional exists. Various methods of determina- 

tion of the extremum depending on the method of selecting the function ‘p ft, x), are 

possible. 

We shall consider the method of solution of the stated problem, which uses Lagrange’s 

formal approach. 

Let the region B (t) of permissible phase coordinates be open, and z (to) be the given 

point of the phase space when t = to. Then (3.1) will have the form 

&j (4 x*, u*, y) = 0 (s=f,. . .) n) 

%f(4 x** u+, Yf -to (4 x*, u*, Y) =sw, u E Q (tf 
T (3.4) 

H&-0)-H&+0)-+- { aH/%,dt==O 

ti 
Introducing the vector fanction h (t) = [pz [t, s+] the components of which are 

A,(c) (s=f,. *. , n), we shall represent the conditions in the form 

a,’ + a6! I ax, = 0, H (t, z*, u*, y) = supH 0, 2, u, ~1, u E Q (t) (3.5) 

If the dynamic system is such that its behavior depends only on y (t, +), then the 

equations (3.4) will define the required instaute of time [3 snd 41. 

4. We shall now determine the number of points of discontinuity necessary for the 

absolute extremam of the fanctional f to occur. 

Restating the problem more accurately, we shall let the functional (2.2) be, on some 

set M, boandsd from below 

infJ=m>--oo 

Let the function Ii (t, n, u, y) possess, for all t E [to, ‘I’] and any y, a aaiqne 

supremam in the space x (t), s (t), and let it be bounded for any z, II and y. 

The manifold fi will be bonnded snd closed, If the absolute extremum of the iimctiond 

I ie not realiscd on the boundary of the manifold 0, then it will be realised on its closure. 

Indeed, let as consider a system of axpanding manifolds @i) (i = 1, . . ., 00)~ corres- 

ponding to i points of discontinuity of the first kind within the values y (t, t$. Let as 

define, on each manifold Di, the magnitude 

(4.1) 

The ssqaeace {/+I canaot inoreaae, since the dimeneionality of the manifold L)i in- 

creases on the tract&ion from the control functions with the smallar number of disconti- 
nnitiss of the functions possessing a larger number of them. 

Since according to the previous assumption he sequence under discussion is infinite, 

non-deorsasing snd bounded, hence it has the limit 

liip 0, tt) = P (0, P 0) = aup R 0, 5, % i& Is, % I/f E V (4.2) 

We shall consider two possible modes of behavior of the seqnance y (t, ti) when i + OO. 

Let the componeata of ths vector function y (t, ts) form, when 4 -+ DQ , a Canchy sequence. 
In this case there exists a unique limit function y* = lim y (t, ti) when i --, oo.Function y* 
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satisfies the initial system of equations. The absolute extremnm of the function R is 

reached on the triad of vector functions z’ (t), y* (t) and U* (t). We shall now assume that, 
when the number of points ti increases without bounds, the values of the vector function 

y (t, ti) tend to two limiting values equal to yl and yP respectively. The sequence of 
supremums (4.1) of the function R being non-decreasing and bounded, tends to the unique 

limit, i.e. 

sup R (r, x, u, ~3 = SUP R (r, xi n, k) -+ F 0) (4.3) 

We shall call the curve 9, u*, yX = yS in the space t, x the curve of zero distance of 

the gliding mode. It does not satisfy the initial system of equations [5], but nevertheless 

continuous functions a, (t) and a, (t) can be found such, that the given curve will satisfy 

the relations 

z,*’ = @%f WA brl, q+ a,f w,w*r t) 

4 =u~+d*, a,>, 0, a,>,% sup R 0, x, a, Y), u E Q (t, t) (4.4) 

Various methods of constructing the minimising sequence are possible, and they da- 

pend on the choice of cp (t, z) . 

Using Lagrangfan notation, let us write the equations giving the solution of the 

stated problem assuming, that the function R has, for all t E fro, T] and any y , anfqae 

supremum points in the space .x (t), u (t). The sequence yi has, for i + oo the limit valaes 

yk (k = 1, 2), and the initia1 system of equations assumes the following form 

h; + alaR/axS (3, a9 Y,, t) + a,aH (2, a, Y,, t)/az, = 0 (s = 1, * * . ( n) 

H 0, A, u, !&) = sup, a E Q (t) (k = 1, 2) (4.5) 
x*’ = a, f (z, n, yl, t) + asf (2, EC, Y,, 0, 1 = al + aa, al > 0, aa > 0 

5. We shall consider the motion of a multi-stage rocket. Equation of motion of the 

Center of Gravity of suoh a device can be represented by (2.1). We assume the control 
function of the dimensionless mass y = m/m,, to be known (see par. 1). We can easily 

come to the conclusion that the given function y (1, ti) lies, for any i, within the closed 
region, the boundaries of which satisfy the equations 

re = 1 - Pt, r,(t) = 1 - B (k + f)t (5.1) 

The upper bound of this set corresponds to the flight of a single-stage rocket, while 

the lower to the rocket in powered flight. Consequently, the extremum of the functional 

can be realised on the boundaries definable by (5.1). 

Equations of motion of the rocket in powered flight become in this case, 

28 * - r, (5, u, rco 01, a = 0 (5.2) 

or, if II (t) is chosen according to a predetermined program i.e. a = a (t), then the system 
of differential equations (5.2) will assume the form 

xe 
. 

- f, (2, r, (t), r) = 0 

Let us consider the Tsiolkovaki problem on the vertical ascent of a composite rocket 
in a homogenoas gravity field. Equation of motion of the Center of Gravity of this rocket 

will be 

fi’ = -Vv,‘1/8--g (5.3) 
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where o is the velocity of the Center of Gravity of the composite rocket and V, = const 

is the relative exhaust velocity. 

The limiting velocity V* achieved under the conditions of continuous thrust is 

V* 
-....=z 

VT s _!?&a-~ _ 1 -__ In LLLo__ K 

r, (li n VI- f+k mp up 
(5.4) 

Hence, we have determined P without obtaining a proper solution of (5.3). For com- 

parison, we shall show solution of a similar problem using the previous method. Having 

found the solution of (5.3) we shall have 

yn = {(1 i- k) exp I- (a / nV/, $_ gT / nV,)l- k}n 

which, on passing to the limit when n -P M, gives 

lint yn= )rir ffl + k) (l- Z,fn)- kin= iyl{[i -(a + k) y/~]-~‘~(~+‘))-~ “+‘) = 
It--SC0 

= exp [I (1 + k)], ~=@$_gT)lVr 

Hence 
v* == [I.,, / 1 + k] In m, I mp - gT 

In conciusion, we shall consider the vertical ascent of a rocket under the continuous 

thrust in the homogeneous medium and in the homogeneous gravity field. 

Equation of motion will, in this case, be 

(5.51 
v’ = - g - oxpSi2 / 2% [I - P (Itk)tl 3- PV, / [I - B (1 + k)tl, D = l/ncx pS9 

Here D is the drag, cz is the coefficient of drag, S is the cross-section area of the 

middle part of the rocket and p is the density of the medium in which the flight takes 

place. The solution of (5.4) can be represented in the form 

v = +. (soy / a~)‘~’ -I 
c [.I”+* (E) -J,_, wwv,, m - yv-1 (U 

CJ, (E;) + y, (E) I 
v = 2 (alao)rfa, E = 2 falaey) %, au=g/P(1+kh aI= c,ps/2m$ (1 + N 

Assuming that to -3: 2 1/G,, no = 0 when to = 0, we shall find 

c = WV_, (Eo) - Y,,I Go)1 / [J,+r (Eo) -JV-, (Ml 
Let us now consider the motion of a hypothetical rocket possessing the following 

characteristics: k = 0.1, y, = 0.1, /? = 0.005 see-r, Vr = 3000 m/see.. mo = 165.3 r., 

T = 164 sec., cz = 113, S = 5 mt and p = 0.01 kg/seca/m’. 

In this case the upper limit V* = 4167 m/set. 

If the model of a single-stage rocket is used, then the velocity at the moment of 

bum-out V = 3134 m/set. 

Our next case is that of a horizontal flight of a winged, single-stage, reaction device, 

the enghe of which may, in this case, work intermittently. Then, the extremum of the 

functional is achieved on the curves possessing an infinite number of points of transition 

from one mode of flight, to the other. Using the equations (4.5). let us derive the equation 

of the gliding curve. Equations of motion of the plane are 

v’ = - [D (v, y) - V, ya] ! YT Y' = Y, (5.6) 
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where y1 assumes the values (0, - 6). The tnnction H has the form 

HZ- hl [D (v, y) - F’, Yzl + hYl 

The condition H (Yz = 0) = H (ya = - p) resnhs in 

hlV, I y + &, = 0 

Along the gliding curve- the following equations are valid 

1)’ = - IL, (v, y) - y‘V,I / y 

(5.7) 

Differ~tiatizg (5.7) with respect to time and taking into account (5.6), we shall 

obtain 

V, D,, 3-D - YL~,, = 0 6.8) 

which is a well known eqnation defining the motion of a plane nndsr a smooth thmat. If we 

assume that the thrust can be regulated, then we shall find, that the curve (5.8) is a part 
of the absolute minimal curve [ 11. 
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